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We report strong evidence of remarkably close periodic repetitions of the structuring of the parameter space
of a damped-driven Duffing oscillator as the amplitude of the drive increases. Families of period-adding
cascades and some intricate networks of periodic oscillations embedded in chaotic phases are also found to
recur closely as the driving force grows. Such surprising regularities suggest that some hitherto unknown
renormalization mechanism may be operating in higher codimension, controlling the alternation of chaos and
order in parameter space of certain flows.
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The ubiquitous presence of period-doubling cascades and
alternations of periodic-chaotic windows are nowadays fa-
miliar features that have been observed experimentally in
virtually all sorts of natural phenomena, particularly in phys-
ics and engineering �1–7�. A fair understanding of these phe-
nomena was obtained in the past two decades by studying
certain paradigmatic discrete-time dynamical systems like,
e.g., the circle and Hénon maps. The quantification of the
bifurcation structuring in discrete-time dynamical systems is
of practical utility for applications ranging from all sorts of
mechanical devices and models to secure communications
with lasers �1–7�.

Discrete-time maps are particularly valuable models be-
cause difference equations directly express future states in
terms of present ones, and obtaining chronological sequences
of points poses no computational difficulties. Parameter
space diagrams illustrating the intricate structure of chaotic
phases for maps were obtained quite early �8,9�. In contrast,
for continuous-time flows the differential equations must first
be solved, usually by approximating them by numerical
methods. The simplicity of iterating maps together with a
basic knowledge attesting that similar results hold both for
maps and for flows led to an exhaustive exploration of dis-
crete mappings, while the equivalent problem for continuous
flows still awaits investigation. There is much to explore in
parameter space of the computationally much more demand-
ing problem of flows, even for elementary situations involv-
ing the simultaneous variation of just two parameters.

A pressing problem that remained virtually unexplored is
the one concerning the inner structuring of the chaotic
phases �10� so abundant in flows. Of course one knows about
alternations of periodic and chaotic windows in systems
ruled by differential equations. But a systematic multiparam-
eter investigation of the structuring of the chaotic phases of
flows is just starting. Some aspects of the intricate organiza-
tion existing inside individual chaotic phases were described
by us recently for lasers and other experimentally accessible
flows �11–13�. The aim of this paper is to provide strong
numerical evidence that chaotic phases together with their
inner structural organization and intricate bifurcation sets re-
peat periodically almost isomorphically over extended por-
tions of parameter space for the Duffing oscillator, as may be
recognized from Figs. 1–3.

The Duffing oscillator is a prototypical example of an
externally driven nonlinear oscillator where deterministic
chaos was detected no later than 1961 �14–16�. While rep-
etitions of bifurcation curves for some low-periodic orbits
were observed earlier in the Duffing oscillator �17� and in
some other periodically driven systems �18�, so far such rep-
etitions were observed only for a few of the lowest periods,
not for chaotic phases. In fact, most of the earlier phase
diagrams do not even mention the occurrence of chaotic
phases and only relatively seldom are the external bound-
aries of chaotic phases delimited in parameter space. In con-
trast, the central aim of this work is to determine where
chaotic phases occur and to present a detailed description of
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FIG. 1. �Color online� Phase diagrams displaying sequences of
chaotic regions �colors; lighter shadings� which recur as the driving
amplitude B of the Duffing oscillator increases. These phase dia-
grams discriminate between regularity, indicated by the darker
shadings, corresponding to negative Lyapunov exponents, and
chaos, indicated by the colors �lighter shadings�, corresponding to
positive exponents. The sequences of chaotic regions contained in-
side the two sets of boxes are magnified in Figs. 2 and 3.
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the inner structuring of the regularities embedded in them.
The chaotic phases and the regular structuring embedded in
them are the key objects studied in this work �10�.

For increasing parameter resolution, Figs. 1–3 provide
compelling evidence of sequences of remarkably close rep-
etitions of the structuring of wide portions of the chaotic
phases of the damped-driven Duffing oscillator �14–16,19�, a
prototypical illustrative flow, as the amplitude of the driving
force grows. By “close repetitions” we mean that, modulo a
few specific details, it is possible to recognize wide param-
eter regions which are essentially isomorphic copies of each
other. This type of recurrent behavior is illustrated in Fig. 1.
In this and all subsequent figures, colors are used to indicate
chaotic phases �positive Lyapunov exponents� while gray
shadings mark periodic oscillations �negative exponents�.
The red tonalities denote positive exponents with larger mag-
nitudes.

Recurrences analogous to those seen in Fig. 1 exist also at
finer scales of resolution. Additionally, there is also a repeti-
tion of a number of finer details and structurings inside se-
quences of chaotic phases like, e.g., the organization of in-
tricate networks of regular phases corresponding to periodic
oscillations. Note that while recent works described regulari-
ties inside single chaotic regions �11–13�, here we report

close structural repetitions among long series of distinct cha-
otic regions. This fact strongly suggests that a generalized
type of renormalization group might be controlling the cha-
os-order alternation over wide parameter surfaces in flows
and, in particular, might be aligning periodicity islands, like
the shrimp �20� along very specific directions �8,9� in control
space. We mention that promising two-parameter renormal-
ization group analysis in two-dimensional space have been
obtained for Mandelbrot sets �21�. Similar results should
hold in more general settings �22�. But these scenarios seem
to be considerably simpler than those reported here.

Among the several models investigated originally by Duf-
fing �19� we select one that is arguably the simplest, viz., the
single-well oscillator defined by the expression

d2x

dt2 + k
dx

dt
+ x3 = B cos t . �1�

Here, k controls the damping while B controls the amplitude
of an external periodically varying driving force. Chaotic
solutions of Eq. �1� were discovered as early as 1962–63
�14–16�. Duffing’s equation has since become the subject of
extensive literature and a few surveys of its most fundamen-
tal properties exist �1,15,23–25�. All oscillators considered
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FIG. 2. �Color online� Details
of the chaotic phases contained in-
side the blue boxes in Fig. 1 dis-
playing structural similarities as
the forcing amplitude B increases.
The right side shows magnified
views of the white boxes on the
left. Darker islands on the right
are shrimps �20�. Numbers refer to
the period of individual shrimps in
multiples of 2�, the period of the
external drive. Distinct period-
adding cascades converge toward
the accumulation horizons at the
boundary of the dark zone of pe-
riod 3 in the lower left corner. The
right side illustrates the great
similarity of structuring as B
grows. Details inside the box in
�d� are shown magnified in Fig. 4.
The coloring scheme is the same
as described in Fig. 1. Note differ-
ences in scales.
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by Duffing �19� involve dissipation and cubic stiffness and
are nowadays popular test grounds where to investigate in-
tricate dynamical changes induced by periodically varying
forces �14–16,23–30�. A particularly interesting application
concerns the mechanical bistability of atoms cooled in an
optical lattice �31�.

The nature of the solutions of Eq. �1� up to B=23.5 has
been described in a comprehensive atlas by Ueda �28�. Sub-
sequently, Byatt-Smith �32� described the solutions up to B
=1000 while Robinson �33� extended further the phase-space
analysis up to B=5000. Results for different normal forms of
Duffing’s single-well oscillator exist �14–17�. We reiterate:
Regularities among curves delimiting domains of some low-
periodic and chaotic solutions may be found in the literature
�14–18� along with some interesting theoretical approxima-
tions for them �34�. But a multiparametric study of the inner
structuring of chaotic phases is still an open problem, a prob-
lem that we wish to focus here.

Similarly as done in Ref. �28�, Robinson corroborated his
numerical integrations by comparing them with experimental
results. From his analysis of the time evolution of the experi-
mental patterns Robinson concluded many things. As of par-
ticular interest in the present context �and obviously in an

ad hoc manner and with the benefit of hindsight�, we quote
the following observation �using our notation for param-
eters�: “Although the details of �the� pattern are different for
other ranges of B, markedly different if k is decreased, cer-
tain features of the pattern always repeat as B is increased
from 0 to 5000.”

Extended repetitions of structurings, either periodic or
chaotic, turn out to be dominating characteristics of the os-
cillator when contemplated in parameter space. We discov-
ered this while computing systematically a series of high-
resolution parameter space diagrams or, equivalently, k−B
charts �15�, or phase diagrams, like those in Figs. 1–3. Such
diagrams were obtained by computing all three Lyapunov
exponents for Eq. �1� with a fixed-step fourth-order Runge-
Kutta integrator.

In the phase diagrams depicted in Figs. 1–3, each indi-
vidual panel displays in colors the numerical value of highest
nonzero Lyapunov exponent computed over equally spaced
parameter meshes with 600�600 exponents. Individual fig-
ures display exponents using two independent color scales. A
red-yellow scale was used to represent phases containing
chaotic oscillations, i.e., positive exponents �red indicating
exponents of larger magnitude�, and a black-white gray scale
for periodic oscillations, i.e., negative exponents, with white
indicating the more negative exponents. Black was used as a
separator of both coloring schemes in order to mark the locus
of zero exponents where bifurcations occur. Figures were
generated sweeping parameters horizontally from left to
right. Each new horizontal line was started always from a
fixed initial condition, �x , ẋ���0.5,0.1�, chosen arbitrarily.
Then, we increased B from this initial value by following the
attractor, i.e., by starting each additional computation of
Lyapunov exponent from the value �x , ẋ� that was in the
memory of the computer when the computation of the pre-
vious values of B was ended. Of course, in this way we loose
information about the coexistence of multiple attractors.
Comparing figures generated scanning parameters along dis-
tinct directions one learns to recognize the regions more
likely to contain multistability, although one can only be sure
of it after computing explicitly basins of attraction for pa-
rameters in such regions. Since to map attractor coexistence
is an even more time-consuming task than computing phase
diagrams, we postpone it for a future work.

The three panels in Fig. 1 compare the parameter struc-
turing when the amplitude B of the forcing increases. In
these panels one clearly sees a systematic repetition of struc-
turing, particularly of the colored shadings used to represent
chaotic phases. As B grows there is a regular repetition of
two sequences of chaotic phases which are contained in the
larger �blue� and in the smaller �green� sequence of boxes.
The larger blue boxes are magnified in Fig. 2 and the green
ones in Fig. 3. The color coding defined for Fig. 1 is the
same used for all similar looking figures.

Given the remarkable agreement of the structuring in
Fig. 1, it is natural to inquire about the repetition of details at
finer scales. This situation is illustrated in Figs. 2 and 3. The
left side in Fig. 2 shows magnified views of the larger boxes
in Fig. 1, while the right side in Fig. 2 shows additional
magnifications of the boxes on its left. The specific param-
eter windows on the right side were selected just because
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FIG. 3. �Color online� Zoom of the green boxes of Fig. 1 evi-
dencing complex bifurcation sets embedded in chaotic phases with
close structural similarity as B grows. The inner structuring of this
sequence of chaotic regions is very distinct from the sequence in
Fig. 2. Both sequences are typical of flows. The coloring is the same
as described in Fig. 1.
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they also contain accumulations analogous to the ones found
recently in semiconductor lasers and other flows �12,13�. But
there is a plethora of additional windows displaying analo-
gous structural similarities.

Numbers in Fig. 2 indicate the periodicity of the solutions
in multiples of 2�, the driving period, for parameters located
in the dark islands embedded in chaotic phases. Whenever
islands are too small to be easily seen in the scale of the
figure, a green dot was used to mark their position. Looking
at the right side we recognize that the structural organization
around the two largest islands of periods 4 and 5 is quite
similar in all three panels. It is also apparent that the agree-
ment is larger when B increases, a tendency that remains true
at larger values of B, as one sees from additional figures that
could not be included here. This is corroborated by Fig. 3,
showing magnifications of the smaller boxes in Fig. 1.

One characteristic feature that recurs in the right panels in
Fig. 2 is the presence of series of period-adding cascades.
For instance, moving downward from the larger period-4 is-
lands located near the center of the three panels it is possible
to recognize two adding cascades when decreasing k and
increasing B:

4 → 7 → 10 → 13 → 16 → ¯ → 3,

5 → 8 → 11 → 14 → 17 → ¯ → 3.

As it is clear, in these cascades the period increases steadily
by 3, which is the period of the large domain toward which
both adding cascades accumulate �12�.

Figure 4 shows the period-5 cascade located in the box of
Fig. 2�d�. With the exception of the first few periods of the
cascade, all remaining periods emerge perfectly aligned
along a specific direction in parameter space �8,9�. For the
cascade in Fig. 4 this direction is well approximated by the
straight line

k = − 0.3972B + 4.4966. �2�

In Fig. 4�b�, the boundary between the chaotic phase and the
period-3 domain may be roughly approximated by

k = − 0.0700B + 0.9618. �3�

These lines intersect at �B ,k���10.803,0.2056�, the ap-
proximate location of the accumulation point of the adding
cascade. This point is indicated by the larger red dot at the
bottom of Fig. 4�b�.

In summary, we reported a description of the isomorphic
arrangement—with approximate translation and scale
recurrences—of periodic regions embedded into chaotic ones
in the two-dimensional control parameter space of a simple
damped-driven Duffing oscillator. This close isomorphic rep-
etition seems to indicate the possibility of relating recurring
structures by affine or nearly affine �9,35� changes of param-
eter that would be interesting to investigate. It would be

equally interesting to characterize the stretching factors rul-
ing repetitions in Figs. 2 and 3 and to find a way of quanti-
fying generically similarities involving the simultaneous
variation of more than one parameter. Do compact windows
of chaos �called “robust chaos” by Banerjee et al. �36��,
which are so critical for secure communications with chaotic
lasers, occur in parameter-space of models ruled by differen-
tial equations or are the chaotic phases of flows invariably
riddled by windows of periodicity in all scales?

These tasks are rather computer-intensive but very likely
to be rewarding for the understanding of the detailed struc-
turing of chaotic phases and of sequences of chaotic phases
in parameter space of flows. To conclude, we remark that the
global recurrent arrangement of periodic and chaotic behav-
iors described here are not restricted to the periodically
driven oscillator used but also show up in the parameter
space of other flows, in particular in autonomous flows. This
will be reported elsewhere.
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helpful suggestions and H. Khammari, Tunisia, and C. Mira,
France, for drawing our attention to their interesting work
quoted in Ref. �17�. C.B. and J.A.C.G. acknowledge support
from CNPq. This work was also supported by the Air Force
Office of Scientific Research, under Contract No. FA9550-
07-1-0102.
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FIG. 4. �Color online� �a� Zoom of the accumulation horizon
seen in Figs. 2�a� and 2�d�. Numbers denote periods in multiples of
2�, the period of the external drive. �b� Magnification of the box in
�a�. The period-adding cascade indicated by the green dots accumu-
lates along the upper dashed line, defined by Eq. �2�, toward the red
dot on the accumulation horizon, the lowest dashed line, defined by
Eq. �3�, boundary between positive and negative Lyapunov expo-
nents. The coloring is the same as described in Fig. 1.
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